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Abstract

This paper studies server positioning and response strategies for spatially arriving jobs with degrada-

tion, for situations of light and medium traffic. For the light traffic case it is shown that the p-median

solution provides the optimum server positioning, and the optimum response strategy involves no server

cooperation. To analyze the medium traffic case, an extended Hypercube queuing model tailored to

handle spatially distributed jobs with degradation rate is formulated. The steady state probabilities

from this model are used to obtain system performance measures.An appropriate set of preferred server

assignments are developed for each region. Results are presented for different problem-size instances.

To demonstrate applicability of the model, a case study is presented based on an emergency response

application. The main findings for the medium traffic case are that the degree of server cooperation

is strongly related to the rate of job degradation and to the cost of assigning jobs that find all servers

busy to a backup server—higher job degradation rates and higher cost of assigning a job to a backup

server result in lower server cooperation.

Keywords: Hypercube model, Spatial queues, Degradation rate, Emergency response

1 Introduction

Job scheduling has an extensive range of application that range from scheduling jobs in industry to

public-sector applications such as responding to medical emergencies. In most of the previous stud-

ies, the processing time of jobs is considered to be a fixed amount of time, but in reality, there are

situations that processing time is a function of the “start” time. In many applications, there are

two system characteristics that should be considered simultaneously: (a) jobs have degradation rate,

and (b) jobs are distributed spatially. We aim to solve different categories of spatially distributed

jobs with degradation. Common examples of these problems are fire fighting, pothole repair, and

humanitarian relief to victims after a disaster. In scheduling problems with spatially distributed jobs
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with degradation, time is a critical aspect. The importance of time in time dependent problems is

well understood to everybody when it comes to responding to an emergency incident. The objective

is to minimize the average response time to incidents, while responding to as many of them as possible.

There are three aspects that show the importance of time dependent problems.

• Life protection: In emergency incidents, every minute has a precious value. For instance in a

heart attack, the first 60 minutes are decisive and it is called as a golden hour. So treatment

during that time is critical.

• Financial: A quick and scheduled response time to a fire incident can prevent significant financial

loss. A small fire can turn into a highly destructive one which may result in irreparable economic

damage to the residential and commercial buildings as well as urban infrastructure.

• Environmental: In natural disasters like earthquake or in fire fighting there is always a risk of

damage to environmental resources.

All the above aspects highlight the significance of a rapid response to time dependent events.

These problems are better understood by categorizing them based on queue traffic volume. For a

heavy traffic queuing system with a large number of jobs, servers are not idle till all of the jobs have

been completed. Repairing potholes of a network of roads in a city is an example of a heavy traffic

queuing system. This problem is studied previously in (Aarabi and Batta, 2020). In medium traffic

situations, there are some instances of queuing and many instances of non-preferred server assignment.

An emergency response system is an example of a medium traffic queuing system. In such emergency

response applications, queues are typically not allowed and queued calls are responded to by a backup

service unit. In light traffic situations, the number of jobs are small and calls are almost always

responded to by their most preferred server (who is almost always available when needed). Discrete

location problems are examples of this category. As mentioned before, the heavy traffic case has al-

ready been studied. This paper studies the light and medium traffic cases. For the light traffic case,

we prove that the p-median solution provides an optimum location for servers. To tackle the medium

traffic case, an extended Hypercube queuing model is developed to calculate transition probabilities

in steady state situations—the key extension is to capture the effect of job degradation, making the

model much more complex than variants of the standard Hypercube situation developed by other

researchers. Steady state probabilities are computed and used to generate appropriate performance

measures for the system. A computational study is performed for small and large instances. A case

study is also presented to illustrate how the model could be be used in an emergency service application.

Before moving forward it is important to point out some key characteristics of a system in which

jobs are both spatially distributed and have a degradation effect. Because jobs are spatially distributed,

a server needs to travel from their idle location to the scene of the job to deliver service. The decision

of which server to send to the call is paramount, and is usually based on travel time. The service time

of a job (which is the time interval measured from when the job arrives in the system till when its

service is completed) is the sum of the travel time from the current location of the assigned server to

the job scene and the on-scene service time at the job scene. The “start” time of the job in such a

case is in fact the travel time of the assigned server to the scene of the job. The degradation effect
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is captured in the changed on-scene service time (which now becomes a function of the travel time).

After completion of a job’s service, the assigned server returns back to its idle location. The total

“service” time for the server from the perspective of the queuing system is the sum of the travel time

from its idle location to the scene of the job, the on-scene service time at the job scene, and the travel

time back from the scene of the call to its idle location. Another system characteristic that is especially

important is the understanding of situations where all servers are busy when a job arrives. In this

case, the job is serviced by a backup server at a specified cost (i.e. its servicing is outsourced).

The main contributions of this paper are as follows:

1. A queuing framework is developed to analyze job scheduling for situations that simultaneously

have spatially distributed jobs and degradation effects.

2. Three situations relative to the queuing framework are highlighted, light traffic, medium traffic

and heavy traffic, with solutions presented for the light and medium traffic cases.

3. It is shown that the p-median problem provides the optimal set of server locations for the case

of light traffic; no server cooperation is needed in this case.

4. An extended Hypercube queuing model tailored to handle spatially distributed jobs with degra-

dation rate is formulated for the medium traffic case. The main finding is that higher job degradation

rates and higher cost of assigning a job to a backup server result in lower server cooperation.

The rest of this paper is organized as follows: Section 2 contains a literature review. Section 3

contains the analysis of the light traffic case. Section 4 presents the medium traffic case. In section

5 we present results of a set of computational experiments. Section 6 presents a case study for our

model. Section 7 provides model limitations and presents other possible modeling schemes. Finally,

section 8 presents our conclusions and future research directions.

2 Literature review

Queuing theory is a diverse research topic. Most queuing models consider servers fixed. Since emer-

gency response situations require server travel to customers, the literature review is confined to queuing

systems with distinguishable servers that move to customer locations to serve them.

The first paper in this stream of research is that by (Larson, 1974), who proposed the Hypercube

queuing model, in which servers travel to the spatially distributed demands. The classic version of

the Hypercube model assumes Poisson arrival rates, exponential service times that are independent

of service start time, and one server assigned to each call request. After (Larson, 1974), many papers

relaxed several key assumptions made in this base model. Several of these papers are now discussed.

(Jarvis, 1985) formulates a heuristic model for the Hypercube that allows the service time to be a

function of the server and the customer they are serving. In the original Hypercube model each server

can be either free or busy so the number of states is 2n (where n is the number of servers). (Larson and

Mcknew, 1982) proposed a model with 3n states that considers three statuses for each server: free, busy

and waiting for dispatch. Later (Atkinson et al., 2008) and (Iannoni et al., 2009) proposed models with

3n states in which atoms get service from two servers with different service rates. Another example of

a model in which regions get service from two servers with different service rates is by (Mendonça and

Morabito, 2001), as applied to emergency response on a highway. (Geroliminis et al., 2009) extended
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the Hypercube model to consider service rates that are independent of the incident’s characteristics.

Another 3n version of the Hypercube queuing model is proposed by (Boyacı and Geroliminis, 2015);

in their model each server has three statuses: free, busy with intradistrict calls, and busy with inter-

district calls.

To model service time degradation in the context of the Hypercube queuing model, this paper takes

the following approach: If the most preferred server is assigned, the service time is an Exponential

random variable. If the second most preferred server is assigned, the service time is the sum of two

Exponential random variables (each with different mean values, implying that it is not an Erlang

random variable). This same logic applies if the kth preferred server is assigned.

Another line of work that is relevant to our efforts are probabilistic coverage models. Some major

contributions in this area are recapped. (Daskin, 1983) assumes that all servers share a common busy

probability and that ambulances operate independently. (Goldberg et al., 1990) extends the model

that was first presented by (Daskin, 1983). By using stochastic travel and service times to compute

ambulance busy probabilities, (Goldberg et al., 1990) allows for dispatch policies through a preference

list, and considers prioritized calls for service. Readers are also pointed to a survey paper on proba-

bilistic location models that by (Galvão and Morabito, 2008). It is noted that only a few papers in

this area, however, balance cooperation between the servers.

To study the cooperation between servers, we need to study methods to optimize the preference list

for any atom. It is a key component of dispatching strategy that has been studied in the literature. The

main concern of emergency systems is to provide suitable and immediate response to arriving requests;

however in some situations not sending a free server due to the large distance between the server and

request locations leads to a more desirable outcome. This fact can affect the dispatching policy. This

dispatching policy is also known in the queuing literature as a cutoff service discipline, meaning a

refusal of immediate service to lower priority customers when the number of available servers is below

a threshold number (cutoff level)(Iannoni et al., 2015). Usually, highest priority customers are served

immediately unless all servers are occupied, in which case they can wait in queue or be lost to the

system, depending on the dispatching strategy (Sacks and Grief, 1994). The server reservation policy

has been also referred as “idle-server-based threshold-priority” when applied to call center systems,

since it allows that low priority customers are queued even if there are servers available (Gans and

Zhou, 2003; Gurvich et al., 2008). (Schaack and Larson, 1986) develop an approximated optimization

procedure that combines the cutoff with other policies into a procedure that determines the number

of servers required in order to minimize staffing costs.

3 Light traffic case

In a light traffic queuing system, the number of servers is large enough so that first preferred server

will always be sent to each response request call. The objective is to find the best location of servers

that minimizes the average job completion time.
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3.1 Motivating example

Suppose there are 10 spatially distributed jobs with degradation rate and three servers that are assigned

to serve them. Each job has to be assigned to one of the servers. When moving to or between jobs,

both servers travel at a fixed speed of 1 mile per hour. The objective is to find the idle locations for the

servers that minimizes the summation of the service times for all the jobs. Let us define xj as location

of server j. The locations of the jobs are shown in Figure 1, with travel distance being measured using

the Euclidean metric.

1

3

4

5

7

8

10

2 6 9

Figure 1: Example for the light traffic queuing system case

Let λi denote the arrival rate for job j, and λ denote the total arrival rate for all jobs. The

objective function is defined as the summation of service time of all the jobs. Because of degradation

consideration the processing time of the job i is defined as (ai + t(xj , i)αi), where t(xj , i) is the travel

time between server j and job i if server j is located in xj , ai is the fixed component of the service

time of job i and αi is the degradation rate of job i. Using this notation, the objective function is

defined as below:

F (x1, x2, x3) =
∑
i

λi/λ(ai +min{t(x1, i), t(x2, i), t(x3, i)} ∗ αi) (1)

Given that initial service times (ai) are fixed, we can equivalently seek to minimize the second part

of the objective function:

F (x1, x2, x3) =
∑
i

(λi/λ ∗min{t(x1, i), t(x2, i), t(x3, i)} ∗ αi) (2)

Let wi be the product of request rate of job i and its degradation rate, i.e. wi =λi/λ∗αi. It follows

that this is equivalent to the well-known p-median problem, with nodal weights wi. Note that the

p-median problem was introduced by (Hakimi, 1964), and its objective is to minimize the total cost

of traveling between jobs and the p opened facilities (servers), when each job is assigned to its closest

server. See Figure 1. For the case of infinitesimally small degradation rates (i.e. αi ≈ 0) the optimal

location of the servers are at coordinates (2, 3), (4, 2), (7, 4). For the case with degradation rates as

is presented in Table 1 the optimal location of servers are on coordinates (2, 3), (4, 3), (6, 1), i.e. the

servers are more spread out.
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To study the impact of (dramatically) increasing the degradation rate of a single job, we increase

the degradation rate for job 4 to 0.9, now the new locations for the servers are (1,2), (4,3) and (6,1),

i.e. the servers are even more spread out.

Table 1: Coordinates and degradation rates of 10 jobs

Jobs 1 2 3 4 5 6 7 8 9 10

Degradation rate (α) 0.02 0.03 0.001 0.01 0.01 0.1 0.02 0.3 0.01 0.01

Coordinate (3,5) (2,3) (1,2) (3,1) (4,2) (4,3) (5,4) (6,1) (7,3) (7,4)

4 Medium traffic case

In the light traffic case there is no queuing of jobs and the closest server is always available. Further-

more, given the travel time of the closest server to the job, the processing time of the job is assumed

to be deterministic. A different approach is taken for the medium traffic case. The whole system is

considered as a spatially distributed queuing system, which implies that arrival rates and service times

for jobs need to be appropriately defined. Server idle locations also need to be defined, along with

server preference lists for jobs. Also, jobs that arrive to find all servers busy need to be handled by a

backup server at a cost.

We study a model in which a set of servers U = {1, 2, 3, .., N} are assigned to an area. The area of

interest is partitioned into M distinct atoms. Each atom generates job requests according to a Poisson

process, independently from other atoms, with known rate λj . The N servers are stationed at their

designated idle locations when available. Each atom has a server preference list, which specifies the

order in which servers are sought for assignment. Jobs arrive continuously over time and are either

served by the first idle server in the server preference list or by a backup system (with a penalty cost)

if all servers in the preference list are busy.

The total “service” time for the server from the perspective of the queuing system is the sum of

the travel time from its idle location to the scene of the job, the on-scene service time at the job scene,

and the travel time back from the scene of the call to its idle location. Job degradation needs to be

incorporated in the service time distribution in a way that can be captured by suitably expanding

the states space in the Hypercube queuing model. To do this, we take the following approach: If the

first preferred server (server i) is dispatched to a request from atom j, service time is assumed to be

an Exponential random variable with parameter µi. When the second preferred server (server i) is

dispatched to a request, the service time will increase due to job degradation as it takes longer for

the server to reach the atom location. The impact of degradation is modeled by assuming that the

service time is now given by the summation of two Exponential random variables, the first one with a

parameter of µi and the second one with a parameter of µi/αj . We extend this modeling framework

for the case of more than two servers. If server i is the nth preferred server which is sent to serve the

request from atom j, the service time is the sum of n exponential random variables with parameters

of µi, µi/αj ,...,µi/αj ∗ (n− 1). Since the Exponential random variables being summed to arrive at the

service time have different parameter values, the resultant service time random variable does not have

an Erlang distribution.
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The degradation effect on average service time based on which server in the preference list is

assigned is now calculated. Towards this end, define fij as the average service time for jobs originating

at atom j which are serviced by server i. This average service time is the sum of (i) the average travel

time from the idle location of server i to atom j, (ii) the average on-scene time spent to serve a job at

atom j, and (iii) the average travel time from atom j to the idle location for server i. A function is

introduced to capture server preferences, aij , where aij = k means that server i is the kth preferred

dispatch unit for atom j. Using this notation, we get:

fij =



1/µi aij = 1

1/µi + (1/µi) ∗ αj aij = 2
...

...

1/µi + (1/µi) ∗ αj + . . .+ (1/µi) ∗ αj ∗ (n− 1) aij = n

(3)

From equation 3 it is evident that the degradation of average service times is a linear increasing func-

tion of the preference number of the first available unit. It is assumed that jobs that arrive when all

servers are busy do not queue, but are instead handled by a backup system. Let C be the probability

that an arriving job finds all servers busy, i.e. it is the system “loss” probability.

The method for modeling degradation is based on the preference number of the first available unit.

The logic for this is based on the premise that unit preferences are based on proximity of the unit to the

atom under consideration. The linear function of degradation with respect to the preference number

of the first available unit assumes that the travel time from the idle location of the nth preferred unit

to the atom under consideration is n times the travel time from the idle location of the first preferred

unit to the same atom. This is an approximation to what might be encountered in practice, but allows

degradation modeling without explicit consideration of travel time.

Another point that needs to be mentioned is the incorporation of travel time into determination

of the service time parameter µj of atom j. The well-documented method of mean service calibration

can be used to do this.

4.1 Example to illustrate states and transition rate calculations (case of

three atoms and two servers)

Consider the simple case of 3 atoms (indicated by circles) and 2 servers (indicated by triangles) shown

in Figure 2. Each atom is an independent generator of Poisson service requests. Assume that service

rate (µ) of each unit (server) and request arrival rate (λ) as well as the degradation rate of each atom

j (α) is as shown in Figure 2. Table 8 presents a full transition matrix for the 2-server example.
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Table 2: Dispatch preference for two-server region

Atom number 1 2 3

First preference server I II I

Second preference server II I II

3

2 1

III

𝞴3, 𝛼3

𝞴2, 𝛼2 𝞴1, 𝛼1

𝜇𝐼𝜇𝐼𝐼

Figure 2: Map of two-server three-atom region

Each atom has a server preference list. The first preferred server for each atom is the closest server

to it, i.e. the preference list for each atom is built by considering the closest server to each atom. The

server preference for atom 1 is 1,2, for atom 2 is 2,1 and for atom 3 is 1,2. These are shown in Table 2.
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𝞴
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𝝁1

𝝁
𝟐
+
𝝁
𝟐 /𝜶

𝟑

𝝁1

𝞴3

Figure 3: Extended hypercube state space for two-server problem
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The expansion of the state space presented for the Hypercube model is motivated by the presenta-

tion in (Halpern, 1977). In the traditional Hypercube model we simply distinguish between servers by

keeping track of whether a server is busy or idle. For a two server case, this results in four states. For

the situation being modeled, when a server is busy servicing an atom for which it is the first preferred

server it has a known exponential service time, but when a server is busy servicing an atom for which

it is the second preferred server it is necessary to know the atom number it is servicing, as the mean

service time of the Exponential random variable is a function of the atom it is servicing. For the

situation being modeled, server 1 can be in one of three possible states: 0, corresponding to idle, 1

corresponding to busy when serving a request from an atom for which server 1 is the first preferred

server, i.e. either atom 1 or 3, 12 corresponds to busy when serving a request from atom 2, for which

server 1 is the second preferred server. Server 2 can be in one of four possible states: 0, corresponding

to idle, 1 corresponding to busy when servicing a request from an atom 2, for which server 2 is the first

preferred server, 11 corresponding to busy when serving a request from atom 1 and 13 corresponding

to busy as serving a request from atom 3, both of which are atoms for which server 2 is the second

preferred server. Therefore, there are 12 (3*4) system states as is shown in Table 3 in Appendix A.

Figure 3 shows the state space of a two server and three atoms case.

Table 3: System states

00 Both servers are free.

01 Server 1 is busy servicing atom 1 or 3 and server 2 is free.

10 Server 1 is free and server 2 is busy servicing atom 2.

11 Server 1 is busy servicing atom 1 or 3 and server 2 is busy servicing atom 2.

012 Server 1 is busy servicing atom 2 and server 2 is free.

112 Both servers are busy servicing atom 2.

110 Server 1 is busy servicing atom 2 and server 2 is free

111 Server 1 is busy servicing atom 1 or 3 and server 2 is busy servicing atom 1.

130 Server 1 is free and server 2 is busy servicing atom 3.

131 Server 1 is busy servicing atom 1 or 3 and server 2 is busy servicing atom 3.

1312 Server 1 is busy servicing atom 2 and server 2 is busy servicing atom 3.

1112 Server 1 is busy servicing atom 2 and server 2 is busy servicing atom 1.

So far the states in the system have been presented. To illustrate the transition between system

states, all the transitions from and to state (112) are studied.
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Transitions to state (112): When the system is in state (10) server 2 is busy, a request from atom

2 will result in server 1 to be sent to atom 2. Since server 1 is the second preferred server for atom

2, the transition will take the system to state (112). Being in state (012) when a request for service

arrives from atom 2, in server 2’s primary area, and server 2 is free, server 2 would be sent to answer

the request and system will transfer to state (112) by rate λ2. When system is in state (1312) and

server 2 completes serving atom 3, by rate µ2 +µ2/α3 transitions to state (112). State (1112) indicates

that server 1 is busy servicing atom 2 and server 2 is busy servicing atom 1. When server 2 completes

servicing atom 1, the system transitions to state (112) by rate µ2 + µ2/α1.

Transitions from state (112): When the system is in the state (112) when server 1 finishes serving

atom 2, the system transitions to the saturated state (11) with service rate µ1 +µ1/α2. In state (112),

since server 2 is the first preferred server for atom 2, when server 2 finishes servicing atom 2, the

transition will take the system to state (012) with rate µ2.

Table 4: Dispatch preference for three-server region

Atom number 1 2 3 4 5 6 7 8 9

First preference unit III III II III III II I I II

Second preference unit I II III I II III III III I

Third preference unit II I I II I I II II III

4.2 Example with 3 servers and 9 atoms

4.2.1 Steady state probability calculations

This sub-section illustrates computation of steady state probabilities for a problem with degradation

rate, 3 servers and 9 atoms. In this case, each server can have at most 2+3M different statuses (where

M is the number of atoms), 2 statuses correspond to 0 (free) and 1 (busy), M for the first stage of the

second preferred server, and 2M for the first and second stages of the third preferred server. For the

example shown in Figure 4 with preference list indicated in Table 4, server I can be free (0) or busy

(1) while servicing any of atoms 7 or 8 which have server I as their first preferred server (2 statuses).

Server I can be busy as well while servicing the first stage of atoms 1, 4 or 9 which have server I as

their second preferred server (3 statuses). Finally, server I can be busy while servicing the first and

second stages of atoms 2, 3 ,5 or 6 (4*2 statuses). In general, let Ai indicate the number of possible

stages for server i, then Ai = 2+ number of atoms that have server i as their second priority + 2∗
number of atoms that have server i as their third priority. Then the total number of all states are as

below:

NS =

n∏
i=1

Ai (4)

It is instructive to note that that all of the achieved states from above formulation are not feasible.

For instance, in Figure 4, the number of possible states areNS = (2+3+8)∗(2+2+8)∗(2+4+2) = 1248.
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Figure 4: Map of 3-server 9-atom region

As discussed previously, any server can have more than 2 statuses. Each possible state of the system

is presented with a vector of three numbers, each one shows the state of the servers. States of server

one are represented with a number in the vector [0, 1, 2,..., 9], server two with a number of [0, 1, 10,

11, 12, ..., 19], and server three with a number of [0, 1, 20, 21, 22, 23,..., 28]. To compute performance

measures, the first step is to compute the steady-state probability of being in any of the 1248 possible

states. Equilibrium probability equations are used to compute the steady-state probabilities. They

are defined supposing that the system attains steady state. Here, as an example, the steady state

equation for state 100 is presented, which is one of the states of the system.

[(λ1 + λ2 + λ4 + λ5) + (λ3 + λ6 + λ9) + λ2 + λ5 + λ1 + λ4 + µ3]p100 =

µ1p101 + µ2p110+

+ (µ3 + µ3/α6)p7,0,0

+ (µ3 + µ3/α7)p8,0,0

+ (µ3 + µ3/α7)p8,0,0

+ (µ3 + µ3/α8)p9,0,0
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Figure 5: Steady state equation for state 100

4.2.2 Performance measurement

An essential input for calculating coverage and other response-time performance measures is the prob-

ability that an incoming call at a particular location is served by a particular server. When these

dispatch probabilities are known, many performance measures can be calculated by conditioning on

the location of the call and the location of the server, and then using the law of total probability. The

calculation of some key system wide performance measures are now presented.

Workload: A useful system performance measure is workload of any individual servers. Workload

pn of server n, can be define as the fraction of time that server n is busy. It is equal to the sum of all

steady-state probabilities that server n is busy plus the fraction of time that the system is saturated

with all its servers busy.

Fraction of total dispatches interresponse area: Given that we can calculate the pnj ’s from

the steady state probabilities, we are able to obtain other performance measures such as fraction of

total dispatches interresponse area. Let us consider pnj as the fraction of all dispatches that send server

n, when available, to atom j and tnj as the associated travel time. The fraction of total dispatches

interresponse area can be computed as:

fI =

N∑
n=1

∑
j 6∈response

area n

fnj (5)

fnj is the fraction of all calls that take server n to serve atom j, that can be computed by fnj =
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Enj ∗ λj/λ, wherein λj is the call arrival rate for atom j, λ is the summation of all atom’s call arrival

rates. Enj is the probability that server n answer requests from atom j.

Average travel times: One of the main performance measures that can be computed in a

Hypercube model is average travel time. Different travel times are obtained by the model starting

from the origin-destiny matrix of travel times (τij). (Larson, 1978) presents the average travel time

performance in his paper. For example, the mean travel time of the system (T ) is estimated by:

T =

N∑
n=1

M∑
j=1

(fnjtnj + P ′
Q) (6)

We are interested in finding the impact of degradation rate of regions on the performance mea-

surements. The following plots shows the variations in two performance measures with respect to

degradation rate. As shown in Figure 6, by increasing the degradation rate the fraction of inter-

response area dispatches decreases and the workload of each server increases. It is due to the fact that

a higher degradation rate will result in a higher service time, therefore the probability that a second

or third preferred server dispatch to serve the atom is low.

4.2.3 Server cooperation

To study the cooperation of servers for a system of jobs with degradation, three kinds of cooperation for

the example of 3 servers and 9 atoms are defined: complete cooperation (CC), incomplete cooperation

(IC), and no cooperation (NC). In a CC scenario all three servers fully cooperate in serving atoms,

i.e. all three servers appear in each atom’s preference list. In the IC scenario, two of the three servers

service each atom. In the NC scenario, only the first preferred unit is send to service each atom.

To show the effect of degradation rate on server cooperation, rseults from CC, IC, and NC are

plotted for different amount of degradation rates in Figure 7. Since a higher degradation rate results

in larger service times, by increasing cooperation, the mean travel time for CC increases when compared

to IC. Degradation rate is not an effective parameter on mean travel time in the case of NC. In Figure

7 a comparison between mean travel time of CC and IC is made. One can see that mean travel time

for CC is always higher than that for IC. This is due to the fact that in a CC system, the second

and third preferred units are located farther away from service request location, thus increasing the

number of trips that are inter-district.
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Figure 6: The impact of degradation on the performance measurements
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Figure 7: Impact of different levels of degradation rates on the complete, incomplete and no cooperation

Table 5: Test results for small instances

Servers (N) 2

Atoms (M) 4 5 6

States (NS) 12 14 21

Degradation Rate (α) 1 2 10 50 100 1 2 10 50 100 1 2 10 50 100

Run Time 3.08 2.94 2.80 2.77 2.76 2.87 2.68 2.49 2.45 2.44 3.80 3.60 3.39 3.35 3.34

Mean Travel Time 0.19 0.19 0.20 0.21 0.19 0.37 0.35 0.57 0.44 0.37 0.72 1.21 1.04 0.61 0.62

Mean Travel Time (no-queuing) 0.39 0.39 0.40 0.43 0.38 0.88 0.85 1.39 1.06 0.77 1.68 2.84 2.44 1.44 1.47

Servers (N) 2

Atoms (M) 7 8 9

States (NS) 28 35 42

Degradation Rate (α) 1 2 10 50 100 1 2 10 50 100 1 2 10 50 100

Run Time 4.59 4.35 4.10 4.04 4.03 11.29 7.09 13.60 14.29 8.31 11.14 11.35 11.21 11.45 12.05

Mean Travel Time 2.36 2.36 2.57 2.74 2.34 4.70 4.42 4.13 4.06 4.05 5.50 5.16 4.81 4.73 4.72

Mean Travel Time (no-queuing) 4.80 4.82 5.27 5.62 4.80 9.87 9.29 8.69 8.55 8.54 11.35 10.65 9.93 9.76 9.74

Servers (N) 3

Atoms (M) 4 5 6

States (NS) 162 231 396

Degradation Rate (α) 1 2 10 50 100 1 2 10 50 100 1 2 10 50 100

Run Time 285 287 288 289 285 913 934 904 1325 1328 8066 5529 5598 5721 8273

Mean Travel Time 1.23 1.18 1.14 1.13 1.13 1.01 0.95 0.89 0.87 0.87 1.46 1.37 1.28 1.26 1.26

Mean Travel Time (no-queuing) 2.53 2.44 2.35 2.33 2.33 2.44 2.29 2.14 2.11 1.79 3.41 3.21 3.01 2.98 2.97

Servers (N) 3

Atoms (M) 7 8 9

States (NS) 648 936 1287

Degradation Rate (α) 1 2 10 50 100 1 2 10 50 100 1 2 10 50 100

Run Time 24084 24006 24192 23691 23824 22815 26182 26120 26425 25957 55878 55878 55882 55878 55878

Mean Travel Time 1.76 1.63 1.51 1.49 1.48 1.62 1.46 1.32 1.28 1.28 1.35 1.32 1.21 1.18 1.18

Mean Travel Time (no-queuing) 3.58 3.33 3.10 3.06 3.05 3.41 3.08 2.77 2.70 2.70 2.79 2.72 2.50 2.44 2.44
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5 Computational results

5.1 Problem instances with small number of atoms

In this section the enhanced Hypercube model is implemented for a small region with two atoms and

three number of servers. A 9 (1 mile * 1 mile) atoms region, as is shown in Figure 8, is considered for

situations with both 2 and 3 servers. The optimal location of servers are specified using the p-median

solution. Arrival rates are considered to be one for all atoms. The µ values for servers 1, 2 and 3 are

set as 2.5, 3.5 and 4.5 respectively. The model is run for two and three servers, and different number of

atoms and degradation rates as well. For any instance, degradation rate for all atoms are similar. As

described in section 4.2.1, the number of states is a function of the number of atoms and the number

of servers. To see the effects of these two factors, mean travel time for different combination of server

and atom sizes are presented in Table 5, with run times provided in secs.

Two types of travel time statistics are contained in Table 5: (i) mean travel time for the case where

calls are queued and are responded to when a server becomes available, and (ii) mean travel time for

the case where no queuing of calls is permitted, and lost calls incur a travel time that is equivalent to

the maximum travel time in the region (the assumption here is that lost calls are responded to by a

backup unit). By examining the last two rows of Table 5 it is evident that increasing degradation rate

results in reducing the mean travel time. This is due to the fact that higher degradation rate leads to a

larger service time, therefore the cooperation between servers decreases and make travel time smaller.

By comparing different instances it is clear that problem instances with larger number of servers have

a smaller value of mean travel time. One explanation is that an increase in the number of servers will

increase the availability of servers, which contributes to a smaller mean travel time. Moreover, it is

evident from Table 5 that there is a significant trade-off between the number of servers and size of the

problem.

By comparing two instances of N = 2,M = 9, α = 100 (2 servers, 9 atoms, and a degradation rate

of 100) and N = 3,M = 9, α = 100, it is evident that larger number of servers has a significant effect

on the size of problem and consequent run time. The instance with 3 servers has a run time 2220 times

greater than that with 2 servers.
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𝞴1 = 1 𝞴2 = 1 𝞴3 = 1

I

II

III

Figure 8: Map of 9-atom problem instances. Left: 2-server, Right: 3-server
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Figure 9: Impact of different number of servers on the number of states

In Figure 9 the result of number of states for different number of atoms with α = 1 is presented. Red

numbers show the associated mean travel time to each point. The number of servers has a dominant

impact on the size and run time of the problem.

5.2 Problem instance with large number of atoms

To address the functionality of our new hypercube model on problems with large number of atoms

and servers, a region with 30 atoms and 10 servers is considered, as shown in Figure 10. The servers

are located optimally using the p-median algorithm. We divide the region into four sub-regions to

make it possible to be solved in an acceptable amount of time. Table 6 contains the mean travel time

associated with each sub-region. It is evident that the mean travel time for a larger number of atoms

is greater than that of smaller number of atoms.
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Figure 10: Map of 10 servers and 30 atoms
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Table 6: Fixed service time and degradation rates of 10 jobs

Subset Mean travel time Number of states Run time

1 3.45 21 1.37

2 4.36 25 1.77

3 1.42 396 1684.40

4 1.55 396 1650.61

6 Emergency response case study

6.1 Context

The Hypercube queuing model represents an important planning tool that can be used in a variety

of applications, including an emergency response system. Response time is one of the system pri-

mary performance measures for public safety that can be measured using the Hypercube model. The

importance of studying emergency response time stems from the fact that delay in a response may

have significant consequences. The goal in emergency response system is to answer requests in a short

amount of time and cover as many call as possible. In this section, the extended Hypercube model is

applied to this situation after preparation of an appropriate data set. For this purpose, a case study is

presented for an application of the proposed framework to determine the response strategies in the City

of Fort Collins, CO, when service time is affected by degradation. The characteristics of the region is

presented in Section 6.2, and then results are summarized in the analysis in Section 6.3. Furthermore,

in Section 6.4, the case study is used to present a convincing argument increased degradation rate

necessitates a decrease server cooperation.

6.2 Data used for generation of problem instances

To illustrate the functionality of our model, an experiment was conducted using real world data from

Fort Collins city, Colorado, which is the urban zone of Poudre county. The City of Fort Collins is

58.1 square miles and contains about 70,962 housing units. Fort Collins has an estimated population

of 172,653. The county has 12 stations that 9 of them are located in the urban area. Each station

contains one engine unit and the area is divided into 402 atoms. The deployment of stations is shown

in the map by a triangle. Historical call data captures call arrival rates and service rates for each atom

of the region. Each atom has two attributes: workload or call requests (λ), and latitude and longitude

coordinates. Data of travel time between any two atoms of the area is available for this study as well.

The urban area of the City of Fort Collins is divided into nine sub-regions. Each atom of any of sub

regions are assigned to the associated server, on the other words, the first preferred server of the atoms

of any sub region is the center server of that region. On average there are 15.97 calls each day for

this urban area. For testing it was assumed that degradation rate is a factor greater than one. We

have assigned degradation rate based on the distance of the atoms from server locations, with atoms

further from stations having a lower degradation rate.
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6.3 Results

As discussed in section 5, the number of servers has a significant effect on the size of the Hypercube

model. It can be understood from Figure 9 that three server models have higher computational run

time in comparison to two server models. Due to this, for the case study two servers are assumed to

service each sub-region—one is the central server of the sub-region, the other is the closest server to

the center of that sub-region. Every atom in the sub-region has a preference list which includes these

two servers. Any server which is closest to the atom is its preferred server.

9

8

7

6

5

4

3

2 1

Figure 11: Fort Collins City, Colorado map used for case study

The model was run separately for each sub-region. Results of solving the model for the nine sub-

regions are presented in Table 7. The first column indicates the sub-region number for each instance.

The second column is the number of atoms in the associated sub-region. The third column shows

the number of states in the associated Hypercube model. In column four, the degradation rate (α) is

presented. Column five and six show the mean travel time and CPU run time (in secs), respectively.

Each sub-region is solved for four different degradation rates. Here k is a coefficient that get

multiplied by the degradation rate, implying that the degradation rate related to k = 2 is twice larger

than that of k = 1. By comparing mean travel times for different amounts of degradation in the

Table 7, it is clear that by increasing the degradation rate in the model, mean travel time decreases.

The reason why this is is true is because for a higher degradation rate, second preferred servers will
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Table 7: Numerical result for case study

Sub

region

Number

of atoms

(M)

Number

of states

(NS)

Degradation

rate (α)

Mean

travel

time*

(MTT)

Run

time

1 38 80
k = 1 0.026 975

k = 2 0.025 989

k = 10 0.024 854

k = 100 0.022 834

2 35 108
k = 1 0.028 999

k = 2 0.026 985

k = 10 0.025 1048

k = 100 0.023 983

3 26 81
k = 1 0.024 325

k = 2 0.022 625

k = 10 0.021 324

k = 100 0.020 322

4 56 171
k = 1 0.032 6182

k = 2 0.030 6383

k = 10 0.029 12237

k = 10 0.027 6284

5 48 100
k = 1 0.035 1144

k = 2 0.035 1143

k = 10 0.032 1129

k = 100 0.029 1161

6 85 174
k = 1 0.038 156266

k = 2 0.038 160646

k = 10 0.035 157284

k = 100 0.032 159601

7 53 110
k = 1 0.036 1670

k = 2 0.034 1685

k = 10 0.032 1705

k = 100 0.030 1702

8 49 196
k = 1 0.031 7287

k = 2 0.029 7449

k = 10 0.027 7546

k = 100 0.025 7225

9 50 104
k = 1 0.044 89167

k = 2 0.041 89519

k = 10 0.038 91171

k = 100 0.035 94065

not be dispatched to the scene and first preferred servers will always respond to calls. Since the first

preferred server is the one that is closest to each atom, mean travel time is decreased. Mean travel

time for larger sub-regions is higher, which is due to the fact that they have more atoms and therefore

higher travel time is needed for servers to service them.

6.4 Analyzing the impact of server cooperation

To further study the impact of cooperation between servers the workload of different servers based on

the concept of workload measurement presented in section 4.2.2 is compared. The workload can be

defined as the fraction of time that server n is busy.
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Figure 12: Workload of the servers in terms of degradation rate

Numerical experiments for the case study of 402 atoms for 9 regions is used to compute the workload

of any server. The same instances are presented in Table 7, and compute the workload of each server

in terms of degradation rate. To better compare the results, a diagram based on the result is presented

in Figure 12, which contains the workload of each server with regard to degradation rates. One can see

from Figure 12 that by increasing the degradation rate, workload of all individual servers increases as

expected. For higher degradation rate, service time increases, therefore to avoid high travel time and

to respond to requests in a short amount of time, cooperation between servers should be decreased.

Low cooperation between servers means that most calls will be answered by the first preferred server.

Hence the workload of the first preferred server in each region increases by increasing degradation rate.

Looking more closely, one can see that servers 1 and 4 have the greatest workloads, respectively. This

is likely due to the fact that regions 1 and 4 are central regions of the urban area of the Fort Collins

city and higher request calls arrive to these centers.

7 Discussion

This paper is an attempt to capture the relationship between server cooperation in a spatially dis-

tributed queuing system and the rate of job degradation. It is intuitively clear that the higher the rate

of job degradation, the lower the extent of server cooperation, since server cooperation tends to put

units “out of position” and results in longer travel times, which in turn result in higher service times

for jobs in a job degradation situation. What is not so clear is the quantification of this interactive

effect. The spatial queuing model which we analyze allows us to quantify this relationship. Neverthe-

less, there are other viable ways to approach this problem. One possible method could be to develop a

simulation model for an emergency service system in which jobs are subject to job degradation effects

and study the system under different levels of server cooperation. Another method could be to develop

a mathematical approximation for the statistics of interest and validate this approximation versus the

queuing model or the simulation. Then, these statistics could be used directly to answer the questions

related to the desired level of server cooperation to match the job degradation that is prevalent for the
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application at hand.

8 Conclusions and Future Research

Our conclusions are as follows:

• The light traffic case can be solved using the solution to the p-median problem; no server coop-

eration is needed in this case.

• In the medium traffic case, the number and location of servers has a significant effect on the

size of problem. Also, the degree of server cooperation is related to the rate of degradation; the

higher the degradation rate the lower the cooperation rate.

An important area for future research is to develop approximation methods for the extended Hy-

percube model. This will enable the solution of problems with a larger number of servers and atoms.
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A Steady state matrix

To provide a better understanding of the transition rate between states in our hypercube model,

the steady state matrix for 2-server and 3-atom example is presented in Table 8. Our model is

programmed in Python 3.6 on a computer running Windows 10 Enterprise (64bit) with a processor

Intel(R)Core(TM) i7-6500U CPU @ 3.50GHz and 7.88GB usable RAM.

Table 8: Generator matrix for example of 3 servers and 3 atoms

0,0 1,0 11,0 13,0 0,1 1,1 11,1 13,1 0,12 1, 12 11,12 13,12

0,0 0 λ2 0 0 λ1 + λ3 0 0 0 0 0 0 0

1,0 µ2 0 0 0 0 λ1 + λ3 0 0 0 λ2 0 0

11,0 0 µ2 + µ2/α1 0 0 0 0 λ1 + λ3 0 0 0 λ2 0

13,0 0 µ2 + µ2/α3 0 0 0 0 0 λ1 + λ3 0 0 0 λ2

0,1 µ1 0 0 0 0 λ2 λ1 λ3 0 0 0 0

1,1 0 µ1 0 0 µ2 0 0 0 0 0 0 0

11,1 0 0 µ1 0 0 µ2 + µ2/α1 0 0 0 0 0 0

13,1 0 0 0 µ1 0 µ2 + µ2/α3 0 0 0 0 0 0

0,12 0 0 0 0 5 0 0 0 0 λ2 λ1 λ3

1,12 0 0 0 0 0 µ1 + µ1/α2 0 0 µ2 0 0 0

11,12 0 0 0 0 0 0 µ1 + µ1/α2 0 0 µ2 + µ2/α1 0 0

13,12 0 0 0 0 0 0 0 µ1 + µ1/α2 0 µ2 + µ2/α3 0 0
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